1,235 research outputs found

    On some geometric features of the Kramer interior solution for a rotating perfect fluid

    Get PDF
    Geometric features (including convexity properties) of an exact interior gravitational field due to a self-gravitating axisymmetric body of perfect fluid in stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian features of the bounding surface for some rotation rates, we show, by means of a detailed analysis of the three-dimensional spatial geodesics, that the standard Newtonian convexity properties do hold. A central role is played by a family of geodesics that are introduced here, and provide a generalization of the Newtonian straight lines parallel to the axis of rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical and Quantum Gravit

    Vacuum Polarization on the Schwarzschild Metric with a Cosmic String

    Get PDF
    We consider the problem of the renormalization of the vacuum polarization in a symmetry space-time with axial but not spherical symmetry, Schwarzschild space-time threaded by an infinite straight cosmic string. Unlike previous calculations, our framework to compute the renormalized vacuum polarization does not rely on special properties of Legendre functions, but rather has been developed in a way that we expect to be applicable to Kerr space-time

    On Quasi-Analytic Functions

    Full text link

    Quasi-local contribution to the scalar self-force: Non-geodesic Motion

    Full text link
    We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a stationary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.Comment: 11 pages, 1 figure, corrected typo in Eq. 2.

    On the ill-posed character of the Lorentz integral transform

    Full text link
    An exact inversion formula for the Lorentz integral transform (LIT) is provided together with the spectrum of the LIT kernel. The exponential increase of the inverse Fourier transform of the LIT kernel entering the inversion formula explains the ill-posed character of the LIT approach. Also the continuous spectrum of the LIT kernel, which approaches zero points necessarily to the same defect. A possible cure is discussed and numerically illustrated.Comment: 13 pages, 3 figure

    Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case

    Full text link
    In our previous paper \cite{co1} we have shown that the theory of circulant matrices allows to recover the result that there exists p+1p+1 Mutually Unbiased Bases in dimension pp, pp being an arbitrary prime number. Two orthonormal bases B,B\mathcal B, \mathcal B' of Cd\mathbb C^d are said mutually unbiased if bB,bB\forall b\in \mathcal B, \forall b' \in \mathcal B' one has that bb=1d| b\cdot b'| = \frac{1}{\sqrt d} (bbb\cdot b' hermitian scalar product in Cd\mathbb C^d). In this paper we show that the theory of block-circulant matrices with circulant blocks allows to show very simply the known result that if d=pnd=p^n (pp a prime number, nn any integer) there exists d+1d+1 mutually Unbiased Bases in Cd\mathbb C^d. Our result relies heavily on an idea of Klimov, Munoz, Romero \cite{klimuro}. As a subproduct we recover properties of quadratic Weil sums for p3p\ge 3, which generalizes the fact that in the prime case the quadratic Gauss sums properties follow from our results

    MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

    Full text link
    CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.Comment: 26 pages, 6 figure

    Features of gravitational waves in higher dimensions

    Full text link
    There are several fundamental differences between four-dimensional and higher-dimensional gravitational waves, namely in the so called braneworld set-up. One of them is their asymptotic behavior within the Cauchy problem. This study is connected with the so called Hadamard problem, which aims at the question of Huygens principle validity. We investigate the effect of braneworld scenarios on the character of propagation of gravitational waves on FRW background.Comment: to appear in ERE09 proceeding

    Transport in Transitory, Three-Dimensional, Liouville Flows

    Full text link
    We derive an action-flux formula to compute the volumes of lobes quantifying transport between past- and future-invariant Lagrangian coherent structures of n-dimensional, transitory, globally Liouville flows. A transitory system is one that is nonautonomous only on a compact time interval. This method requires relatively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying only on the generalized actions of loops on the lobe boundaries. These are easily computed since the vector fields are autonomous before and after the time-dependent transition. Two examples in three-dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through a microfluidic channel mixer. In both cases the action-flux computations of transport are compared to those obtained using Monte Carlo methods.Comment: 30 pages, 16 figures, 1 table, submitted to SIAM J. Appl. Dyn. Sy

    Regularization of static self-forces

    Full text link
    Various regularization methods have been used to compute the self-force acting on a static particle in a static, curved spacetime. Many of these are based on Hadamard's two-point function in three dimensions. On the other hand, the regularization method that enjoys the best justification is that of Detweiler and Whiting, which is based on a four-dimensional Green's function. We establish the connection between these methods and find that they are all equivalent, in the sense that they all lead to the same static self-force. For general static spacetimes, we compute local expansions of the Green's functions on which the various regularization methods are based. We find that these agree up to a certain high order, and conjecture that they might be equal to all orders. We show that this equivalence is exact in the case of ultrastatic spacetimes. Finally, our computations are exploited to provide regularization parameters for a static particle in a general static and spherically-symmetric spacetime.Comment: 23 pages, no figure
    corecore